ong, 4 bytes are being put on the stack, and an integer is only two bytes.
Even though one instruction is being used, there are actually two parameters
being passed to the MoveTo trap.

50E2: A893 vt _MoveTo ; (h,v:INTEGER)
50E4: 3F3C 0029 <L) ! PUSH #41
50E8: 4EBA CE84 2001F06E JSR DRAWRESS

It turns out that DRAWRESS will draw the 41st string in the STR# resource. If
you look in Resedit, you will see that this is "3.8" the version number.

50EC: 3F3C 000C oLt PUSH #12
Note the lack of a size specifier. Remember that this means use the word (two
bytes) size. Textsize needs an integer and IM tells us that an integer is two
bytes - or one word.

50F0: A88A vt _TextSize ; (size:INTEGER) This is
pretty easy - sets the fontsize to 12 point.

50F2: 422D F4EF -$B11 CLR.B glob25 (A5)
Here is the .B size specifier, meaning clear only the low byte of glob25.

50F6: 42A7 'B." CLR.L - (A7)

50F8: 3F3C 0004 ErE G PUSH #4

50FC: A9B9 ! ! _GetCursor ;

(cursorID:INTEGER) :CursHandle
OK, this is a slightly different trap, since it returns something on the stack
- as evidenced by the colon and description at the end of the trap parameter

list (:CursHandle). Since this trap returns a value on the stack (and not
with a passed pointer as with the GWMgrPort above), the program will first
clear enough stack space to hold that value. Thus the CLR.L -(A7). The trap

returns a handle which is 32 bits or a long word. The trap needs an integer,
so the program pushes the word 4 onto the stack. Next, the program will pop
the CursHandle returned by the trap off the stack into the variable glob24.

50FE: 2BSF F4EA -$B16 POP.L glob24 (A5)
This the CursorHandle.

5102: 1F3C 0002 L PUSH.B #2

5106: 4EBA AEFS 2000000 JSR SETTHECU
This subroutine is setting the cursor. If you look at it, you will see that
it looks at the parameter passed (2 in this case) as well as glob25 (0 in this
case). When called from here, it will pass down to the 2nd SetCursor and use
the CursorHandle in glob24.

510A: 42A7 'B." CLR.L - (A7)
Once again, clear space on the stack for a returned handle.

510C: 2F3A 0144 2005252 PUSH.L data260 ; 'PACK'

5110: 3F3C 0003 ErE G PUSH #3
GetResource needs the resource type and the ID# to load.

5114: ASAOQ L _GetResource ; (theType:ResType;
ID:INTEGER) :Handle

5116: 285F T POP.L A4
Pop the handle (to the PACK resource) into A4.

5118: 2F0C /! PUSH.L A4
And push it back on the stack so HNoPurge can use it.

511A: 4EAD 00CA 1000AA6 JSR HNoPurge (A5)

Once again we see a subroutine with the same name as a trap. You can bet that
the trap will be called somewhere in the subroutine.

511E: 42A7 'B."' CLR.L - (A7)

5120: 2F3A 0130 2005252 PUSH.L data260 ; '"PACK'

5124: 3F3C 0006 G PUSH #6

5128: ASAOQ oLt _GetResource ; (theType:ResType;
ID:INTEGER) :Handle

512A: 285F (! POP.L A4

512C: 2F0C VAR PUSH.L A4

512E: 4EAD 00CA 1000AA6 JSR HNoPurge (AS)
OK, the previous several lines have basically loaded two resources, PACK #3,

and PACK #6. The handles to the two resources have been made non-purgeable
meaning that the memory manager will not remove them to create free space.
5132: 42A7 'B." CLR.L - (A7)
5134: 3F3C 0001 el PUSH #1
5138: 4EAD 0182 1000D8C JSR proc6l (AD)

This little gem invokes Pack6. My understanding of the package manager is
less than it should be, but it looks to me like this says do a Pack6 with a
selector of 1. Hell, lets just look at proc 61...

D8C: 7406 't proc6l MOVEQ #6,D2
OK, here is the selector (and not the 1 passed from the above procedure). So
we are going to be calling the IUGetIntl procedure (I think) with a parameter
of 1 (passed from the calling procedure. Look in IM for details of this trap
and its parameters.
D8E: 205F v POP.L A0
This pops the parameter passed,
D90: 3F02 R PUSH D2
so that the selector parameter can be put ahead of it on the stack.
D92: 2FO08 LA PUSH.L AOQ
Now the 2nd parm can be put back on the stack and the trap called.
D94: ADED oLt _Pack6 AutoPop; (selector:INTEGER)
513C: 285F (! POP.L A4

proc 61 is returning a handle to the intl resource that it loaded, so save it
in A4.

513E: 2F0C v/ PUSH.L A4
5140: 4EAD 00CA 1000ARA6 JSR HNoPurge (A5)
5144: 42A77 'B.!T CLR.L - (A7)
5146: 2F3A 010A 2005252 PUSH.L data260 ; 'PACK'
514A: 3F3C 0007 ErE G PUSH #7
514E: ASAOQ oLt _GetResource ; (theType:ResType;
ID:INTEGER) :Handle
5150: 285F (! POP.L A4
A4 now has a handle to Pack #7.
5152: 2F0C VAR PUSH.L A4
5154: 4EAD 00CA 1000AA6 JSR HNoPurge (A5)
5158: 4EAD 0172 1000D7C JSR proc59 (AD)
This proc calles Pack2 with a selector of 2. This reads the Disk
Initialization package into memory.
515C: 42A7 'B." CLR.L - (A7)
Clear space on stack for a returned handle.
515E: 2F3A 00EE 200524E PUSH.L data259 ; "ICON'
5162: 4267 'Bg' CLR - (A7)
Push the integer O.
5164: ASAOQ oLt _GetResource ; (theType:ResType;
ID:INTEGER) :Handle
5166: 285F (! POP.L A4
A4 has a handle to Icon resource ID O.
5168: 42A7 'B." CLR.L - (A7)
516A: 2F3A 00E2 200524E PUSH.L data259 ; '"ICON'

516E: 3F3C 0001 el PUSH #1

5172: ASAOQ oLt _GetResource ; (theType:ResType;
ID:INTEGER) :Handle

5174: 285F (! POP.L A4
A4 has a handle to Icon resource ID 1.
5176: 4267 'Bg' CLR - (A7)
Make space for the returned RefNum.
5178: A994 oLt _CurResFile ; :RefNum
Note - no parameters passed.
517A: 3B5F FFEO =520 POP glob58 (A5)
Pop off the returned RefNum.
517E: 486D FEDE -$122 PEA glob56 (A5)
5182: 3F3C 000D RS G PUSH #13
5186: 4EAD 002A 100048C JSR proc5 (A5)
Here is proc5 again - the string getter. If you remember (from looking at
DRAWRESS), the 1lst parm is the string ptr, and the 2nd is the string # to get.
This i1s returning a ptr to the string "The quick brown fox..." in globb6.
518A: 7000 'p.! MOVEQ #0,DO0
518C: 2B40 FED4 -$12C MOVE.L DO,glob52 (A5)
5190: 7000 'p.! MOVEQ #0, DO
5192: 2B40 FECC -5134 MOVE.L DO,glob50 (A5)
5196: 7000 'p.! MOVEQ #0,DO0
5198: 2B40 F61E -$9E2 MOVE.L DO,glob4l (A5)
519C: 3B7C FFFF F616 -$9EA MOVE #SFFFF,glob38 (A5)
51A2: 426D F614 -$9EC CLR glob37 (A5)
51A6: 7000 'p.! MOVEQ #0, DO
51A8: 2B40 Fo6l0 -$9F0 MOVE.L DO,glob36 (A5)
51AC: 7000 'p.! MOVEQ #0, DO
51AE: 2B40 F61A -$9E6 MOVE.L DO,glob40 (A5)
51B2: 7034 'p4d'! MOVEQ #52,DO0
51B4: 2B40 F5FE -SA02 MOVE.L DO,glob31 (A5)
The above instructions have simply initialized several global variables. TWe
don't care what they mean at this point. If you like, you can write down what

has been set to what, but I would only recommend this if later on you need to
know explicitly what a global contains.

51B8: 42A7 'B." CLR.L - (A7)

51BA: 7002 'p.! MOVEQ #2,D0
Note the MoveQ. Remember, this is the same as MOVE.L (except it executes
faster) .

51BC: 2F00 LA PUSH.L DO

51BE: 4EAD 009A 1000A5C JSR NewHandle (A5)
NewHandle is a trap that returns a handle to a block of memory whose size is
in DO. It makes sense to guess that this procedure will do essentially the
same thing - and after checking, it certainly does.

51C2: 2B5F F622 -$9DE POP.L glob42 (AS)
So glob42 has a handle to a 2 byte chunk of memory.

51C6: 426D F626 -$9DA CLR glob43 (A5)

51CA: 70FF 'p.! MOVEQ #-1,DO0
Here is one of those cases where the sign bit is important. Remember that the
-1 is sign extended to 32 bits so DO is being set to all binary ones (-1 in
binary) .

51CC: 2B40 F602 -$9FE MOVE.L DO,glob32 (A5)

51D0: 42A7 'B." CLR.L - (A7)

51D2: 2EB8 02FO0 S2F0 MOVE.L DoubleTime, (A7)

51D6: 7002 'p.! MOVEQ #2,D0

51D8: 2F00 RV PUSH.L DO

51DA: 4EAD 01A2 1001120 JSR proc76 (A5)

This is a gross looking (i.e. no Traps anywhere) procedure so I am not going

to attempt to figure it out. You will want to use the technique a lot (the
"Too Gross" technique) to determine which procedures to spend time with.

51DE: 2B5F F5F6 -$A0A POP.L glob29 (A5)
51E2: 207C 0000 OADS SADS8 MOVEA.L #SysResName, A0
Put a pointer to the System File's name in AO.
51E8: 43ED F4F6 -$BOA LEA glob28 (A5),Al
Put the address of glob28 in Al.
51EC: 703F 'p?! MOVEQ #63,D0
Set up DO as a loop counter.
51EE: 22D8 UL lho 3 MOVE.L (AO)+, (Al)+
This moves 4 bytes from A0 to Al. Note the use of auto post increment to
automatically move the pointers to the next available data each time. This

moves 4 bytes of the System name into glob28. Note that glob28 will not be a

pointer to the Sys Name, but will rather contain the actual string data.
51F0: 51C8 FFFC 20051EE DBRA DO, lho 3

This decrements DO (the loop counter) and branches back to the start of the

loop until it is finished.

51F4: 422D F4F5 -$BOB CLR.B glob27 (A5)

51F8: 267C 0000 028E S28E MOVEA.L #Rom85,A3
ROM85 is another of those variables that my old IMs are missing so god only
knows what is going on here. TI'll guess that it is looking for the 128K roms.

51FE: 4A53 'Js! TST (A3)

5200: 6D20 2005222 BLT.S lho 4

5202: 42A7 'B." CLR.L - (A7)

5204: 3F3C 008F RS G PUSH #143

5208: 4EAD 00E2 1000AC6 JSR proc38 (AD)
Well, let's see here. Proc38 uses the passed parm as a trap number and
returns that traps address on the stack.

520C: 42A7 'B." CLR.L - (A7)

Note that the trap address has not been popped off the stack. So when these
next instructions are done, that address will still be on the stack.

520E: 3F3C 009F RS G PUSH #159
5212: 4EAD 00E2 1000AC®6 JSR proc38 (A5)
Get another trap address on the stack,
5216: 201F vt POP.L DO
and put it in DO, leaving the first trap address on the stack.
5218: BOOF v CMP.L (A7) +, DO
Now, compare the two trap addresses,
521A: 56C0 vt SNE DO
and set the low byte of DO to FF hex if they are not the same.
521C: 4400 'D." NEG.B DO
Do 2's complement - make the low byte of DO its own negative. Since DO's byte
is either 0 or FF (from the SNE), the NEG will make it either 0 (if it was 0)
or 1 (if it was FF) - (for NEG, invert the bits, then add a binary 1).
521E: 1B40 F4F5 -$BOB MOVE.B DO0,glob27 (A5)
And save this number.
5222: 42A7 "B, lho 4 CLR.L -(A7)
5224: 2F3C 0001 0000 '/<....' PUSH.L #$810000
522A: 4EAD 009A 1000A5C JSR NewHandle (A5)
Get a new Handle for a block of size 10000 hex.
522E: 2B5F F4F0 -$B10 POP.L glob26 (A5)
And save the handle.
5232: 6708 200523C BEQ.S lho 5

Branch if a NIL pointer (meaning the memory was not available) is popped off
the stack.

5234: 487A FE26 200505C PEA MYGROWZO
Otherwise setup a grow zone function.

5238: 4EAD 0092 1000A1E JSR SetGrowZone (A5)
A grow zone procedure is a custom method for handling low memory conditions
and overrides the memory managers routines. Not a great description, but we
don't really care about this.

523C: 4CDF 1880 'L..." 1lho 5 MOVEM.L (A7)+,D7/A3-A4
Restore those saved regs,

5240: 4ES5E NN UNLK Ab
Kill the stack frame,

5242: 4E75 'Nu' RTS

And return to the caling proc.

5244: D345 5455 5020 2020 data257 DNAME SETUP , 0
524Cc: '..' data258 DC.W 8
;-refs - 2/SETUP
524E: 4943 dataz259 DC.B 'ICON'
;-refs - 2/SETUP
5252: 5041 data260 DC.B ' PACK'

The DRAWRESS Procedure

1F6E: QUAL DRAWRESS ; b# =284 s#2
=procl48
vip 1 VEQU =256
One local variable.
paraml VEQU 8
One parameter needed.
1F6E: VEND
;-refs - 2/DRAWFHIN 2/SETUP 2 /DRAWNUM
;- 2 /DRAWDHIN
OK, you should be able to just look at this and see what happens. First off,
look at the trap, DrawString. It takes one parameter, a pointer to a string.

Now, the previous line says to push the address of the local variable so this
has to be the string pointer. Go back a few lines and we see that proc5 is
being called with two parameters: the string pointer, and the parameter from
the calling procedure. You can deduce that procb5 has to get a string from
somewhere, and probably will call the GetString trap or some equivalent. 1In
fact, if you look at procb, you will see that it calls GetResource (resource
type STR#). This returns a handle to the STR# resource. Proc5 then uses the
second parameter to figure out which string the calling procedure really
wants. Proc5 loops through the STR# resource until it comes to the right
string, then moves a pointer to the string into the first parameter and
returns. When it gets back here, vfp 1 contains a pointer to the string.

1F6E: 4E56 FF0O0 '"NV..' DRAWRESS LINK A6, #-5100

1F72: 486E FFO0O 200FF00 PEA vip 1(A6)

1F76: 3F2E 0008 2000008 PUSH paraml (A6)

1F7A: 4EAD 002A 100048C JSR procS (A5)
1F7E: 486E FF0O 200FF00 PEA vip 1 (A6)
At this point, vfp 1 has the stringptr.
1F82: AB84 oLt _DrawString ; (s:8tr255)
1F84: 4ESE NN UNLK A6
1F86: 205F v POP.L AQ
1F88: 544F 'TO"' ADDQ #2,RA7
1F8A: 4EDO 'N."' JMP (AO)

Note that there is no RTS instruction to return. The subroutine uses a common
substitute. First it pops the return address off the stack (which is actually
what the RTS would have done anyways) and then does an indirect JMP (AO0).

This just means to jump to whatever A0 points to and A0 points to the return
address.

1F8C: C452 4157 5245 5353 datal25 DNAME DRAWRESS, 0,0

The MAKEAWIN Procedure

5852: QUAL MAKEAWIN ; b# =490 s#2
=proc209
vhy 1 VEQU =12
Two local variables, no parms passed.
vhy 2 VEQU -8
5852: VEND
;—-refs - 1/DA Mover
5852: 4E56 FFFO 'NV..' MAKEAWIN LINK A6, #-510
5856: 42A7 'B." CLR.L - (A7)

These instructions are setting up the GetNewDialog below. 1st, clear space for
the DialogPtr.

5858: 3F3C 000A ErE G PUSH #10
Push the Dialog ID #.
585C: 42A7 'B." CLR.L - (A7)
Push a NIL pointer for wStorage
585E: 70FF 'p.! MOVEQ #-1,D0
5860: 2F00 VA PUSH.L DO
Push a 32 bit -1 (IM says to do this to make the dialog the frontmost window) .
5862: A97C ! _GetNewDialog ; (D1gID:INTEGER;
wStorage:Ptr; behind:WindowPtr) :DialogPtr
5864: 2B5F FFFA -6 POP.L glob67 (A5)
And pop off the dialogPtr. This will be used by proc MAKEBOX.
5868: 486D FEC4 -$13C PEA glob48 (AD)
586C: 3F3C 000A ErE G PUSH #10
This is the dialog item - the left list box if you check Resedit.
5870: 4EBA FF32 2005724 JSR MAKEBOX

Well, after inspecting this procedure, it looks like more can be determined by

just looking at these few instructions here. Notice that MakeBox is being

called with two parameters: The 1st being an unknown global variable, and the

second being one of the two list boxes in Mover's main dialog. So it looks

like MakeBox is just performing some housekeeping on these two list boxes.
5874: 486D FECS8 -$138 PEA glob49 (A5)

5878: 3F3C 000B el PUSH #11
Now do the right list box.

587C: 4EBA FF26 20057A4 JSR MAKEBOX
5880: 206D FECA4 -$13C MOVEA.L glob48 (A5),A0
Get the address in (not of) glob48 into AOQ,
5884: 2050 ‘P! MOVEA.L (AQ),A0
and dereference it - or get whatever glob48 was pointing at into AO0.
5886: 216D FEC8 0004 -$138 MOVE.L glob49(A5),4(RA0)
Now move glob49 (a pointer I suspect) into 4 past AO. So glob48 contains a
pointer which points four bytes behind the pointer in glob49.
588C: 206D FECS8 -$138 MOVEA.L glob49(A5),A0

Now do the exact opposite. Grab the pointer in glob49 and stick the pointer
in glob48 4 bytes past it.

5890: 2050 ''p!' MOVEA.L (A0),AO0

5892: 216D FEC4 0004 -$13C MOVE.L glob48(A5),4 (A0)

These last few instructions were kind of a mess because we don't no anything
about how globs 48 and 49 will be used. We will come back here after looking
at MainEven and particularly HandleBu. It will turn out that these two
globals are pointers (or maybe handles, we don't really care) to the two list
boxes on the main dialog. In addition, each pointer as a way of referring to
the other list box. At this point, this does not make any sense, but later
on, glob 50 will be set to either glob48 or glob 49 (or NIL) depending on
which list box - if any - has a selection made in it. The reason that glob48
and glob49 need to refer to each other, is that glob50 will be used to check
both list boxes to see if their associated volumes are locked. See HandleBu
for details.

5898: 2F2D FFFA -6 PUSH.L glob67 (AS5)
589C: 3F3C 0002 el PUSH #2
Item is the Copy button.
58A0: 486E FFF4 200FFF4 PEA vhy 1 (A6)
58A4: 486D FFFO6 -$SA PEA glob66 (AD5)
This will save a handle to it.
58A8: 486E FFF8 200FFF8 PEA vhy 2 (R6)
58AC: A98D oLt _GetDItem ; (dlg:DialogPtr;
itemNo:INTEGER; VAR klnd INTEGER VAR item:Handle; VAR box:Rect)
58AE: 2F2D FFFA -6 PUSH.L glob67(A5)
58B2: 3F3C 0006 el PUSH #6
Item is the left Open button.
58B6: 486E FFF4 200FFF4 PEA vhy_l(A6)
58BA: 486D FFEC -$14 PEA glob63 (A5)
This will save a handle to it.
58BE: 486E FFF8 200FFF8 PEA vhy 2 (A6)
58C2: A98D oLt _GetDItem ; (dlg:DialogPtr;
itemNo:INTEGER; VAR klnd INTEGER VAR item: Handle; VAR box:Rect)
58C4: 2F2D FFFA -6 PUSH.L glob67 (AS5)
58C8: 3F3C 0007 eyt PUSH #7
Item is the right Open button.
58CC: 486E FFF4 200FFF4 PEA vhy 1 (A6)
58D0: 486D FFFO -$10 PEA glob64 (A5)
This will save a handle to it.
58D4: 486E FFF8 200FFF8 PEA vhy 2 (A6)
58D8: A98D oLt _GetDItem ; (dlg:DialogPtr;

itemNo:INTEGER; VAR klnd INTEGER VAR item: Handle; VAR box:Rect)
Now the program is going to assign dialog procedures to various of its items.
Items 12 and 13 - the two filename boxes are assigned the DrawName proecdure.

Items 14 - the size selected box - gets DrawSize. Item 15 -the font text demo
box - gets DrawHint. Items 16 through 18 - various lines in the dialog box -
get DrawGray. And items 19 and 20 - the free space on disk boxes - get
DrawFree. If you examine SetDProc, you will see that it simply invokes
GetDItem to get a handle to the dialog item (passed from the list below) and
then uses SetDItem to set the dialogProcPtr to the procedure passed from the
list below.

58DA: 3F3C 000C el PUSH #12

58DE: 487A FB2E 200540E PEA DRAWNAME

58E2: 4EBA FETE 2005762 JSR SETDPROC

58E6: 3F3C 000D el PUSH #13

58EA: 487A FB22 200540E PEA DRAWNAME

58EE: 4EBA FE72 2005762 JSR SETDPROC

58F2: 3F3C 000E el PUSH #14

58F6: 487A FC32 200552A PEA DRAWSIZE

58FA: 4EBA FE66 2005762 JSR SETDPROC

58FE: 3F3C 000F S G PUSH #15

5902: 487A FA3A 200533E PEA DRAWHINT

5906: 4EBA FESA 2005762 JSR SETDPROC

590A: 3F3C 0010 el PUSH #16

590E: 487A FEI1C 200572C PEA DRAWGRAY

5912: 4EBA FE4E 2005762 JSR SETDPROC

5916: 3F3C 0011 eyt PUSH #17

591A: 487A FE10 200572¢C PEA DRAWGRAY

591E: 4EBA FEA42 2005762 JSR SETDPROC

5922: 3F3C 0012 el PUSH #18

5926: 487A FEO04 200572C PEA DRAWGRAY

592A: 4EBA FE36 2005762 JSR SETDPROC

592E: 3F3C 0013 el PUSH #19

5932: 487A FD12 2005646 PEA DRAWFREE

5936: 4EBA FE2A 2005762 JSR SETDPROC

593A: 3F3C 0014 el PUSH #20

593E: 487A FDO6 2005646 PEA DRAWFREE

5942: 4EBA FE1E 2005762 JSR SETDPROC

5946: 2F2D FFFA -6 PUSH.L glob67(AD)
Now the dialog is made the current Port

594A: A873 '.s! _SetPort ; (port:GrafPtr)

594C: 2F2D FFFA -6 PUSH.L glob67 (A5)
and make the dialog visible,

5950: A915 oLt _ShowWindow ; (theWindow:WindowPtr)

5952: 2F2D FFFA -6 PUSH.L glob67 (AS5)
and make it the frontmost window.

5956: A91F oLt _SelectWindow ; (theWindow:WindowPtr)

5958: 3F3C 0002 el PUSH #2

595C: 4EBA AT78A 20000E8 JSR DIMITEM
These instructions dim the two Open buttons.

5960: 3F3C 0003 eyt PUSH #3

5964: 4EBA A782 20000E8 JSR DIMITEM

5968: 2F2D FFFA -6 PUSH.L glob67 (A5)

596C: A981 oLt _DrawDialog ; (dlg:DialogPtr) And
finally, draw the damn thing.

596E: 4ESE NN UNLK A6

5970: 4E75 'Nu' RTS

5972: CD41 4B45 4157 494E data270 DNAME MAKEAWIN, 0,0

The MAKEBOX Procedure.

57A4: QUAL MAKEBOX ; b# =488 s#2
=proc208
vhx 1 VEQU -14
vhx 2 VEQU -10
vhx 3 VEQU -8
vhx 4 VEQU -4
param? VEQU 8
Parm 2 is the dialog item #
paraml VEQU 10
57A4: VEND
;-refs - 2/MAKEAWIN
57A4: 4E56 FFE2 'NV..' MAKEBOX LINK DG, #-SE
57A8: 48E7 0018 'H...' MOVEM.L A3-A4,- (A7)
57AC: 266E 000A 200000A MOVEA.L paraml (A6),A3
A3 gets whatever is in parm 1.
57B0: 2F2D FFFA -6 PUSH.L glob67(A5)
Push the DialogPtr,
57B4: 3F2E 0008 2000008 PUSH param?2 (A6)
And push the item #.
57B8: 486E FFF6 200FFFo6 PEA vhx 2 (A6)
This will get the Kind.
57BC: 486E FFF2 200FFF2 PEA vhx 1 (A6)
This will get the ItemHandle.
57C0: 486E FFF8 200FFF8 PEA vhx 3 (A6)
This will get the Box.
57C4: A98D oLt _GetDItem ; (dlg:DialogPtr;
itemNo:INTEGER; VAR kind:INTEGER; VAR item:Handle; VAR box:Rect)
57C6: 2F2D FFFA -6 PUSH.L glob67 (A5)
Now push the dialogPtr and item again...
57CA: 3F2E 0008 2000008 PUSH param?2 (A6)
57CE: 3F2E FFF6 200FFF6 PUSH vhx 2 (A6)
Push the item Kind
57D2: 487A F662 2004E36 PEA DRAWBOX
See IM - this is a procPtr.
57D6: 486E FFF8 200FFF8 PEA vhx 3 (A6)
And push the Box
57DA: A98E oLt _SetDItem ; (dlg:DialogPtr;
itemNo, kind:INTEGER; item:Handle; box:Rect)
57DC: 42A7 'B." CLR.L - (A7)
57DE: 7064 'pd! MOVEQ #100, DO
57E0: 2F00 LA PUSH.L DO
57E2: 4EAD 009A 1000A5C JSR NewHandle (AS5)
57E6: 269F 'L ! POP.L (A3)
Get a new handle - size 100 - and put it into parml (which A3 points to).
57E8: 2053 'St MOVEA.L (A3),A0
A0 gets the handle.
57EA: 2850 (P MOVEA.L (AQ),A4

And A4 gets the pointer. OK, A0 is a handle meaning it points to a pointer
which in turn points to whatever it is we care about (in this case, a free

block of memory). That means that (AO0) grabs what ever A0 points to which is

(by definition of a handle) the pointer.

57EC: 28AD FFFA -6 MOVE.L glob67(A5), (A4d)
And now we put the dialogPtr into the block of memory gotten by NewHandle.
57F0: 426C 0060 'Bl1.! CLR 96 (A4)
Remember, A4 points (its a pointer, not a handle!) to a block of memory, 100
bytes long. So this instruction simply clears the 96 byte in that block.
57F4: 204cC 'L MOVEA.L A4,A0
Put the pointer into AO.
57F6: 5088 'P.! ADDQ.L #8,A0

Add 8 to A0. Previously we had stored the dialogPtr at the beginning of this
block. Since a pointer is 8 bytes long, A0 no points to the first byte after
the dialogPtr.

57F8: 43EE FFF8 200FFF8 LEA vhx 3 (A6),Al
vhx 3 is a Box which is of type Rect which is 4 integers, or 4 words, or two
long words.

57FC: 20D9 vt MOVE.L (A1l)+, (AO)+

57FE: 20D9 vt MOVE.L (Al)+, (AO) +
So move the Box information into the free memory right after the dialogPtr and
increment A0 to the next free byte.

5800: 302E FFFC 200FFFC MOVE vhx_4 (A6),DO0
This is tough since we don't know what vhx 4 is to start with.

5804: 906E FFF8 200FFF8 SUB vhx 3 (A6),DO0
But whatever, subtrack vhx 3 from it, result in DO.

5808: 48CO 'H.' EXT.L DO
At this point, DO is accurate to the word length (since that was all the SUB
specified). This will make it's sign (negative or posative) accurate to all
32 bits.

580A: 81FC 0010 Tt DIVS #16,DO0
Now, divide by 16.

580E: 3940 0062 '9@.b’ MOVE DO, 98 (A4)

And put this value (whatever it is) in the last two bytes (notice it is a word
length instruction) of the memory block.

5812: 426C 0058 'B1.X" CLR 88 (A4)
5816: 397C FFFF 0056 '9|...V' MOVE #SFFFF, 86 (A4)
581C: 422C 0014 'B,.." CLR.B 20 (A4)
These last instructions are filling in various parts of the memory block.
5820: 206D FFFA -6 MOVEA.L glob67 (A5),A0
Put the DialogPtr back in AO.
5824: 2153 0098 t1s.t MOVE.L (A3),152(A0)
A3 still points to parml.
5828: 2F13 RV PUSH.L (A3)
So, this effectively pushes parml
582A: 4EBA AEA4 20006D0 JSR MAKESBAR

This is fairly complicated, but this procedure makes a scroll bar for the
dialog item.

582E: 2053 'S MOVEA.L (A3),A0
5830: 2050 ‘P! MOVEA.L (AO0),A0
Can't tell what these instructions are doing.
5832: 2068 0010 ""h..' MOVEA.L 16 (A0),A0
5836: 2050 ' p' MOVEA.L (A0),A0
5838: 2153 0024 '15.8" MOVE.L (A3),36(A0)
583C: 4CDF 1800 'L...! MOVEM.L (A7)+,A3-A4
5840: 4ESE NN UNLK Ab
5842: 205F v POP.L A0
Pop off the return address.
5844: 5CA4F "\O' ADDQ #6,A7

5846: 4EDO 'N.Y JMP (AO)

And jump back to the calling procedure.
5848: CD41 4B45 424F 5820 data269 DNAME MAKEBOX ,0,0
The MAINEVEN Procedure
Basically, the main loop consists of a set of housekeeping routines, a call to
ModalDialog to read dialog events that take place, and a simple jump table to

handle the various events. D7 needs to be zero for the loop to keep running.
If an error occurs, or the user hits Quit, D7 is changed to one and the
procedure exits. First, DA Mover attempts to allocate a large block of memory

(10000 hex) into glob26. If this is successful (or glob26 already has a
memory handle) then the program skips down to make some more checks -
otherwise a memory error is generated. Next, the procedure checks to see if
there are any files open and if so, calls FlushVol to write any changes to
disk.

0: QUAL MAINEVEN ; b# =1 s#1 =procl
vab 1 VEQU -6

0: VEND
;-refs - 1/DA Mover

0: 4E56 FFF8 'NV..' MAINEVEN LINK A6, #-8

4: 48E7 0308 'H...' MOVEM.L D6-D7/A4,- (A7)

8: 4207 'B." CLR.B D7

Enable the Main Event Loop.
A: 4AAD F4FO0 -$B10 lab_l TST.L glob26 (A5)

glob46 will (or does) contain a handle to a large block of memory. So, if
glob26 already has the handle, branch down, otherwise try to get some memory.

E: 661C 100002C BNE.S lab 2

10: 42A7 'B." CLR.L - (A7)
Clear stack space for the returned handle.

12: 2F3C 0001 0000 '/<....' PUSH.L #510000
Size of memory block needed.

18: 4EBA 0A42 1000A5C JSR NewHandle

1C: 2BSF F4FO0 -$B10 POP.L glob26 (A5)
And get the handle in glob26.

20: 660A 100002C BNE. S lab 2
Remember, a NIL handle or pointer is all zeroes. glob26 either has a wvalid
handle or a NIL handle. If it is wvalid, branch.

22: 3F3C 0032 'e<.2] PUSH #50

26: 4EAD 01CA 200023cC JSR DOALERT (AD)
Otherwise do some memory alert (you can check this if you like.)

2A: 7TEO1 T~ MOVEQ #1,D7
and disable the main event loop.

2C: 1007 oLt lab 2 MOVE.B D7,DO0

2E: 6600 00DO 1000100 BNE lab 15
Go if loop disabled from above.

32: 206D FEC4 -$13C MOVEA.L glob48 (A5),A0
Get reference to left list box.

36: 2850 '(P' MOVEA.L (AOQ),A4

38: 4A6C 0058 'J1.X" TST 88 (A4)

Look at the descrpition of FlushVol (next paragraph) to see what this variable
means.

3C: 670E 100004cC BEQ.S lab 3
Seeing that 88 (A4) is the VRefNum, then branch if it is zero (no volume
available - i.e. the list box has no opened file in it).

3E: 4267 'Bg' CLR - (A7)

Space for function result (OSErr).
40: 42A7 'B." CLR.L - (A7)
iovNameP

